Archiwum kategorii: Prawo, normy, metodologia

Metoda zużyciowa a Centralny rejestr charakterystyki energetycznej budynków

Metoda zużyciowa kontra CRCEB

Jak głosi metodologia, świadectwa charakterystyki energetycznej można wykonywać na dwa sposoby: metodą obliczeniową i zużyciową. W metodzie zużyciowej można wydzielić dwa warianty obliczeń: gdy system ogrzewania i przygotowania c.w.u. w budynku jest wspólny, lub gdy jest rozdzielny. W przypadku systemu rozdzielnego osobno podaje się zużycie energii na cele ogrzewania, i osobno na przygotowanie c.w.u. (dane potwierdzone odczytami z liczników). W przypadku systemu wspólnego zużycie energii przez oba systemy jest zaś mierzone i podawane łącznie. W związku z tym nie liczy się zapotrzebowania na energię użytkową i wskaźnika EU. I tu nasuwa się pytanie jak w takim razie powinno wyglądać świadectwo charakterystyki energetycznej dla metody zużyciowej, gdy system ogrzewania i c.w.u. jest wspólny?

Patrząc na dwa wzory świadectw podane w rozp. MIiR z 27.02.2015 r. żaden nie wydaje się właściwy. Aż prosi się o trzeci wzór świadectwa, którego jednak nie znajdziemy w metodologii. Czyżby Twórca coś przeoczył? Jeśli wartości zużycia energii i wskaźników zapotrzebowania na energię podaje się i liczy łącznie dla obu systemów, logiczne wydaje się, aby na świadectwie dane te także były prezentowane wspólnie. W tym celu należałoby połączyć odpowiednie wiersze i kolumny w tabelach.

Problem dotyczy także późniejszego obowiązku zarejestrowania takiego dokumentu w Centralnym rejestrze charakterystyki energetycznej budynków. Czy wyniki podawać w polach dedykowanych ogrzewaniu czy ciepłej wodzie? A może podzielić na pół i wpisać po równo w obu systemach? Jak prawidłowo zarejestrować takie świadectwo? Nieprawdą będzie przecież wpisanie np. wszystkich wartości w polach ogrzewania, gdyż wtedy dla ciepłej wody pozostaną zera, a to nie będzie odpowiadało rzeczywistości, gdzie zużycie energii na podgrzanie wody jest potwierdzone.

Wygląda na to, że Certyfikatorom pozostaje kierowanie się własnym rozsądkiem i nadzieja, że Centralny rejestr charakterystyki energetycznej budynków zostanie dopasowany do potrzeb i będzie w pełni kompatybilny z metodologią.

Nowe warunki techniczne

 WT 2017

Od 1.01.2017 r. nowe wymagania dotyczą współczynników przenikania ciepła przegród oraz wartości wskaźnika nieodnawialnej energii pierwotnej dla budynków.

W programie ArCADia-TERMO można projektować i wykonywać obliczenia zgodnie z tymi wymaganiami. W tym celu należy w menu Ustawienia – Opcje – Wybór obliczeń w polu Warunki techniczne wybrać z listy rozwijalnej „WT 2017”. Po kliknięciu na przycisk „Parametry WT” otworzy się okno, w którym są do wyboru wymagania techniczne na 2014, 2017 i 2021 r. Odpowiednie wartości pojawią się w tablicach i to do nich program będzie porównywał wyniki obliczeń w raportach.

Choć już teraz może być niemałym wyzwaniem spełnić dość wygórowane wymagania, należy mieć na uwadze, że do 2021 roku planowane są dalsze „cięcia”. W ten sposób promowane i popularyzowane będzie budownictwo energooszczędne.

Co wpływa na wartości wskaźników EU, EK i EP

Główne determinanty wskaźników EU, EK i EP

Przy wykonywaniu obliczeń cieplnych na potrzeby sporządzenia świadectwa czy projektowanej charakterystyki energetycznej, kluczową kwestią jest wyznaczenie wskaźników rocznego zapotrzebowania na energię użytkową EU, końcową EK i pierwotną EP. Najogólniej mówiąc, im niższe zapotrzebowanie na ciepło/chłód, tym niższe powinny być wyżej wymienione wskaźniki. Ponadto większa powierzchnia o regulowanej temperaturze powietrza i wyższe sprawności poszczególnych systemów również mają wpływ na obniżenie wartości tych parametrów.

Na wielkość wskaźników rocznego zapotrzebowania na energię wpływ mają przede wszystkim: sprawności poszczególnych systemów (instalacji), powierzchnia o regulowanej temperaturze powietrza, wielkość sezonowego zapotrzebowania na ciepło/chłód, a w przypadku wskaźnika rocznego zapotrzebowania na energię pierwotną również współczynniki nakładu nieodnawialnej energii pierwotnej, które zależą z kolei od rodzaju zastosowanego paliwa.

Często Certyfikatorzy pytają co zrobić, aby spełnić wymagania stawiane budynkom w obszarze wskaźników EU, EK i EP. Bardzo często okazuje się bowiem, że ostateczne wyniki nieznacznie przekraczają wartości dopuszczalne. Należy wtedy zweryfikować poprawność wprowadzonych danych odnośnie: sezonowego zapotrzebowania na ciepło/chłód (straty przez przenikanie/wentylację, zyski wewnętrzne/od nasłonecznienia, tryby pracy), powierzchni o regulowanej temperaturze, sprawności cząstkowych poszczególnych systemów.

suwak

Korzystniejsze wyniki uzyskamy przy wyższych sprawnościach instalacji oraz, w przypadku zapotrzebowania na energię pierwotną, przy zastosowaniu odnawialnych źródeł energii. Obecne przepisy są bowiem tak skonstruowane, że nawet w dobrze zaizolowanych termicznie budynkach, w których wszystkie przegrody spełniają wymagania stawiane przez Warunki techniczne, ciężko jest uzyskać wskaźnik EP na poziomie poniżej dopuszczalnego progu w przypadku, gdy systemy ogrzewania, ciepłej wody użytkowej, chłodzenia czy oświetlenia są zasilane przez konwencjonalne źródła energii. Tradycyjne paliwa mają bowiem znacznie wyższe współczynniki nakładu nieodnawialnej energii pierwotnej niż źródła alternatywne. Na szczęście aktualne przepisy dopuszczają możliwość niespełnienia wymaganej wartości wskaźnika EP w przypadku budynków istniejących. Warunek ten jest natomiast obligatoryjny dla nowo powstających budynków.

Mówiąc o odnawialnych źródłach energii, ciekawym przykładem są pompy ciepła. Jeśli pompa ciepła jest zasilana energią elektryczną pochodzącą z sieci elektroenergetycznej, to nawet pomimo bardzo wysokiej sprawności wytwarzania takiego urządzenia (ηg > 1), uzyskamy niestety wysokie wartości wskaźnika EP, co wynika z tego, że energia elektryczna posiada najwyższy współczynnik nakładu nieodnawialnej energii pierwotnej wi = 3, w odróżnieniu od źródeł odnawialnych, takich jak biomasa, energia słoneczna, wiatrowa czy geotermalna, dla których współczynniki nakładu nieodnawialnej energii pierwotnej są bliskie lub równe zero.

determinanty01

Zdarza się również, że wyniki końcowe są zbyt optymistyczne, mało realne. W takich sytuacjach okazuje się zazwyczaj, że zostały podane bardzo wysokie zyski wewnętrzne lub nie zdefiniowano prawidłowo strat przez wentylację, co wpłynęło na znaczne zaniżenie, a nawet wyzerowanie wartości sezonowego zapotrzebowania na ciepło.

zyski 01

Wnioski:

– im niższy współczynnik nakładu nieodnawialnej energii pierwotnej, tym niższa wartość wskaźnika EP, ponieważ założeniem aktualnych przepisów jest promowanie odnawialnych źródeł energii

– im wyższe sprawności całkowite poszczególnych systemów i większa powierzchnia o regulowanej temperaturze powietrza oraz im niższe zapotrzebowanie na ciepło/chłód, tym niższe wartości wskaźników rocznego zapotrzebowania na energię

– przyczyną zbyt niskich, nierealnych wartości wskaźników EU, EK i EP jest najczęściej nieprawidłowo wyznaczona, zaniżona wartość QHnd, spowodowana określeniem zbyt wysokich zysków wewnętrznych, niewyznaczeniem pełnych strat przez wentylację czy wprowadzeniem licznych przerw osłabienia lub nieużytkowania

– w przypadku, gdy nie da się określić powierzchni o regulowanej temperaturze powietrza (ogrzewanej lub chłodzonej), ponieważ w budynku brak jest systemu ogrzewania/chłodzenia, nie da się wyznaczyć wskaźników rocznego zapotrzebowania na energię użytkową, końcową i pierwotną.

Zyski wewnętrzne w biurach

Zyski wewnętrzne w budynkach biurowych

Wykonując świadectwo charakterystyki energetycznej czy projektowaną charakterystykę energetyczną dla budynku lub części budynku pełniącego funkcję biurową, wiele osób popełnia błąd w obliczeniach zysków wewnętrznych. W najnowszym rozporządzeniu MIiR z 27 lutego 2015 r., dotyczącym sporządzania świadectw oraz projektowanych charakterystyk energetycznych, przedstawiony jest uproszczony sposób obliczania zysków wewnętrznych, z określonymi wielkościami jednostkowego obciążenia cieplnego pomieszczeń wewnętrznymi zyskami ciepła q [W/m2], jakie należy przyjmować do obliczeń w zależności od rodzaju/funkcji budynku lub jego części.

zyski biura

W przypadku przestrzeni biurowych pojawia się pojęcie parametru P1, który to parametr jest definiowany jako udział powierzchni biurowej do całkowitej powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku biurowym. Skoro jest to udział, to zakres jego wartości mieści się w przedziale od 0 do 1. Błędem jest zatem wpisywanie wielkości tego parametru przekraczającej 1, co niestety często niedoświadczeni Certyfikatorzy czynią, podając zamiast udziału powierzchnię części biurowej. W efekcie zyski wewnętrzne są tak duże, że zazwyczaj niwelują do zera lub prawie całkowicie straty ciepła i uzyskane zapotrzebowanie na ciepło budynku Qhnd jest znikome (bliskie zeru).

zyski 01

Podobna sytuacja często ma miejsce, gdy osoba sporządzająca ŚCHE czy PCHE decyduje się na obliczenie zysków wewnętrznych metodą szczegółową, polegającą na odrębnym wyliczeniu zysków od ludzi, urządzeń, oświetlenia, instalacji i zasobników.

zyski 02

Mając na uwadze opisane sytuacje, w programie ArCADia-TERMO w przypadku wpisania nieprawidłowej wielkości parametru P1, w raporcie o błędach pojawia się komunikat wskazujący, aby wartość wskaźnika P1 mieściła się w przedziale od 0 do 1. Ufamy, że dzięki temu Użytkownik w prosty sposób jest w stanie wykryć i poprawić błąd w obliczeniach. Warto mieć zatem na uwadze powyższe wskazówki podczas pracy nad projektem, aby uniknąć podobnych błędów.

Audyt – analiza wzoru na roczne oszczędności

Audyt – analiza wzoru na roczne oszczędności

Analizując rozp. MIiR z 3.09.2015 r. zmieniające rozporządzenie w sprawie szczegółowego zakresu i form audytu energetycznego oraz części audytu remontowego, wzorów kart audytów, a także algorytmu oceny opłacalności przedsięwzięcia termomodernizacyjnego, można zauważyć pewne nieścisłości.

Przede wszystkim w obliczeniach audytu nie uwzględnia się czynnika, jakim jest zmienność kosztów w czasie. Koszty mediów podaje się na chwilę obecną, pomijając czynnik ekonomiczny jakim jest to, że z dużym prawdopodobieństwem będą się one zmieniać na przestrzeni czasu.

Jednak największe zastrzeżenia wzbudza wzór dotyczący kwoty rocznych oszczędności przewidzianej do uzyskania w wyniku realizacji przedsięwzięcia termomodernizacyjnego, w którym brakuje rozróżnienia kosztów energii dla systemu ogrzewania i przygotowania ciepłej wody użytkowej.

7Wygląda to tak, jakby Ustawodawca nie przewidział możliwości, że w media można się zaopatrywać u różnych dostawców, w związku z czym koszty te mogą być różne.

8

Tyczy się to zarówno kosztów stałych, zmiennych, jak i abonamentowych dla obu systemów.

Poprawniejszą formą wzoru wydaje się poniższa postać:

9Oczywiście w programie ArCADia-TERMO koszty przed i po modernizacji dla systemów ogrzewania i przygotowania ciepłej wody użytkowej można podawać indywidualnie i będą one uwzględnione w obliczeniach niezależnie od siebie.

NFOŚiGW – program priorytetowy „Poprawa efektywności energetycznej” – standard NF40 i NF15

Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej w 2013 roku uruchomił program priorytetowy pod nazwą „Poprawa efektywności energetycznej”, którego celem jest oszczędność energii i ograniczenie lub uniknięcie emisji CO2 poprzez dofinasowanie przedsięwzięć poprawiających efektywność wykorzystania energii w nowopowstających budynkach mieszkalnych. Wspomniane dofinansowanie ma postać dopłaty do kredytów na budowę domów energooszczędnych. Program ma funkcjonować do końca roku 2022. Wysokość dofinansowania jest uzależniona od uzyskanego wskaźnika rocznego jednostkowego zapotrzebowania na energię użytkową do celów ogrzewania  i wentylacji (EUco) oraz od spełnienia innych warunków, w tym dotyczących sprawności instalacji grzewczej i przygotowania ciepłej wody użytkowej. Wysokość dofinasowania wynosi:

– dla domów jednorodzinnych:

  1. a) standard NF40 – EUco ≤ 40 kWh/(m2rok) – dotacja 30 000 zł brutto,
  2. b) standard NF15 – EUco ≤ 15 kWh/(m2rok) – dotacja 50 000 zł brutto;

– dla lokali mieszkalnych w budynkach wielorodzinnych:

  1. c) standard NF40 – EUco ≤ 40 kWh/(m2rok) – dotacja 11 000 zł brutto,
  2. d) standard NF15 – EUco ≤ 15 kWh/(m2rok) – dotacja 16 000 zł brutto.

W przypadku nie osiągnięcia zakładanego standardu NF15, dotacja może być obniżona do poziomu przewidzianego dla standardu NF40. W przypadku nie osiągnięcia zakładanego standardu NF40, dotacja nie zostanie udzielona. Ponadto, jeśli część powierzchni domu/lokalu mieszkalnego wykorzystywana będzie do prowadzenia działalności gospodarczej (również wynajmu), to wysokość dofinansowania pomniejsza się proporcjonalnie do udziału powierzchni przeznaczonej na prowadzenie działalności gospodarczej w całkowitej powierzchni domu/lokalu, np. jeżeli działalność gospodarcza będzie prowadzona na 30% powierzchni całkowitej, to wysokość dofinasowania zmniejszy się o  30%. W przypadku, gdy działalność gospodarcza będzie prowadzona na powierzchni przekraczającej 50% domu/lokalu mieszkalnego, przedsięwzięcie nie kwalifikuje się do dofinasowania przez NFOŚiGW.

Kwota kredytu przeznaczonego na pokrycie kosztów kwalifikowanych przedsięwzięcia musi być wyższa od kwoty dotacji. Zakończenie realizacji przedsięwzięcia musi nastąpić w ciągu 3 lat od dnia podpisania umowy o kredyt. Wypłata dotacji następuje po zrealizowaniu przedsięwzięcia wraz z potwierdzeniem uzyskania efektu ekologicznego, rozumianego jako osiągnięcie standardu energetycznego.

Beneficjentami mogą być:

– osoby fizyczne dysponujące prawomocnym pozwoleniem na budowę oraz posiadające prawo do dysponowania nieruchomością, na której będzie budowany budynek mieszkalny. Przez dysponowanie nieruchomością należy rozumieć prawo własności (w tym współwłasność) oraz użytkowanie wieczyste;

– osoby fizyczne dysponujące uprawnieniem do przeniesienia przez dewelopera na swoją rzecz: prawa własności nieruchomości wraz z domem jednorodzinnym, który deweloper na niej wybuduje albo użytkowania wieczystego nieruchomości gruntowej i własności domu jednorodzinnego, który będzie na niej posadowiony i stanowić będzie odrębną nieruchomość albo własności lokalu mieszkalnego. Przez dewelopera rozumie się także spółdzielnię mieszkaniową.

Rodzaje przedsięwzięć objętych dotacją:

– budowa domu jednorodzinnego,

– zakup nowego domu jednorodzinnego,

– zakup lokalu mieszkalnego w nowym budynku mieszkalnym wielorodzinnym.

Przedsięwzięcie musi spełniać standard energetyczny NF40 lub NF15. Przez dom jednorodzinny należy rozumieć budynek wolno stojący albo samodzielną część domu bliźniaczego lub szeregowego, przeznaczony i wykorzystywany na cele mieszkaniowe beneficjenta, co najmniej w połowie powierzchni całkowitej.

Koszty kwalifikowane to koszty budowy albo zakupu domu jednorodzinnego lub lokalu mieszkalnego w nowym budynku wielorodzinnym wraz z kosztem projektu budowlanego, kosztem wykonania weryfikacji projektu budowlanego, kosztem wykonania testu szczelności budynku i potwierdzenia osiągnięcia standardu energetycznego. Koszty kwalifikowane obejmują te elementy budynku, które prowadzą do spełnienia kryteriów Programu Priorytetowego, w szczególności:

– zakup i montaż elementów konstrukcyjnych bryły budynku, w tym materiałów izolacyjnych przegród,

– zakup i montaż układów wentylacji mechanicznej z odzyskiem ciepła,

– zakup i montaż instalacji ogrzewania, przygotowania ciepłej wody użytkowej, wodno-kanalizacyjnej i elektrycznej.

Nie zalicza się do nich kosztów związanych z wykończeniem mieszkania/budynku umożliwiających zamieszkanie. Wysokość dotacji nie jest uzależniona od wysokości kosztów kwalifikowanych, jednakże nie może przekraczać ich wartości. Spłata części kredytu następuje poprzez przekazanie dotacji przez NFOŚiGW na podstawie wystąpienia banku potwierdzającego zrealizowanie przedsięwzięcia. Efekty rzeczowe i ekologiczne, osiągnięte w wyniku przedsięwzięcia, są ewidencjonowane przez NFOŚiGW, na podstawie informacji przekazywanych przez banki. Jako efekt ekologiczny uznaje się oszczędność energii i ograniczenie lub uniknięcie emisji CO2 w wyniku wybudowania budynku w jednym ze standardów energetycznych: NF40 lub NF15. Miernikiem osiągnięcia efektu ekologicznego jest wskaźnik EUco. Ponadto należy spełnić jeszcze inne wymagania dotyczące m.in. współczynników przenikania ciepła przegród czy wartości mostków cieplnych. Wybrane przedsięwzięcia będą podlegać badaniu powykonawczemu w zakresie osiągnięcia standardu energetycznego, przeprowadzonemu przez audytora wskazanego przez NFOŚiGW.

26

27

Nowelizacja rozporządzenia dotyczącego audytów

Dnia 27 października 2015 r. weszło w życie nowe rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 3 września 2015 r., zmieniające rozporządzenie Ministra Infrastruktury z 17 marca 2009 r. w sprawie szczegółowego zakresu i form audytu energetycznego oraz części audytu remontowego, wzorów kart audytów, a także algorytmu oceny opłacalności przedsięwzięcia termomodernizacyjnego. Wprowadzone zmiany dotyczą m.in.:

– powołania się na ustawę z dnia 29 sierpnia 2014 r. o charakterystyce energetycznej budynków oraz aktualne rozporządzenie w sprawie metodologii wyznaczania charakterystyki energetycznej i świadectw charakterystyki energetycznej;

– modyfikacji algorytmów obliczeń zapotrzebowania na ciepło po modernizacji, polegających na zastąpieniu oporu cieplnego R [(m2K)/W] przegród współczynnikiem przenikania ciepła U [W/(m2K)];

22

– zmian we wzorach kart audytu energetycznego i remontowego;

23

– zastąpienia zapisu o minimalnych oporach cieplnych R, jakie muszą spełniać przegrody po modernizacji, poprzez odesłanie do wartości wymaganego współczynnika przenikania ciepła U podanych w warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie;

24

25

– wprowadzenia udziału odnawialnych źródeł energii;

– ujednolicenia nomenklatury.

Zmiany te były konieczne głównie z tego względu, że poprzednie rozporządzenie z 17 marca 2009 r. powoływało się na nieaktualne już rozporządzenie MI z 6.11.2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej. Wprowadzone zmiany idą w dobrym kierunku i nie powinny powodować większych komplikacji osobom sporządzającym audyty oraz weryfikatorom.

Analiza równania na energię do chłodzenia Qc,nd

 Niektórym certyfikatorom wiele problemów sprawia interpretacja równania służącego do obliczania zapotrzebowania na energię do chłodzenia w świadectwie energetycznym.

Poniżej znajduje się fragment normy EN-ISO 13790:2009 odnoszącej się do obliczeń zapotrzebowania na energię do chłodzenia.

Należy przyznać, że treść tej normy ( dokładniej jej tłumaczenie) nie jest najlepsze, przez co jest trudne do zrozumienia.

c1

c2

A teraz spróbuję streścić, jak ja rozumiem powyższy tekst, czyniąc go bardziej przystępnym.

Zapotrzebowanie na energię do chłodzenia określa poniższy wzór:

QC,nd = QC,gn– ηc*QC,ht

gdzie: QC,gn – to całkowite zyski ciepła ( wewnętrzne oraz od nasłonecznienia)

ηc – bezwymiarowy czynnik wykorzystania strat ciepła dla chłodzenia

QC,ht– to całkowite przenoszenie ciepła przez przenikanie i wentylację

Oto wnioski:

1) im mniejszy współczynnik przenikania U przegród (np. ściany, stropy, okna, drzwi) tym mniejsze jest zapotrzebowanie na chłód, czyli na energię do chłodzenia.

Uzasadnienie: Jeżeli przegrody mają wysoki współ. U (np. ściany U=1,5), wtedy nadmiar ciepła, pochodzący z zysków ciepła (wewnętrznych i od nasłonecznienia) może być szybciej i łatwiej usunięty z danego pomieszczenia chłodzonego. Czyli, na przykład: jeżeli mamy dobrze zaizolowaną styropianem salę konferencyjną, to ciepło zgromadzone wewnątrz tej sali nie ma jak uciec (przeniknąć) przez ściany i dach i dlatego trzeba dostarczyć bardzo dużo chłodnego powietrza, aby zmniejszyć wewnętrzną temperaturę tej sali. Natomiast, w gdy ściany i dach są bez izolacji, wtedy spora część ciepła przenika przez te przegrody, a tylko pozostała, nadmiarowego cześć ciepła w pomieszczeniach musi być schłodzona. Stąd ilość energii na chłodzenie spada. Można się o tym przekonać, wchodząc po południu do takiej sali np. w hotelu ( która nie była jeszcze w tym dniu używana) i poczuć, jak najpierw jest chłodno (ponieważ nikogo wcześniej nie było) , a po 15 minutach jest przyjemnie (ponieważ są już zyski wewnętrzne). Jednak po 30 minutach trzeba włączyć chłodzenie (klimatyzację), aby osiągnąć temperaturę komfortu np. 25 stopni.

 2) im większy strumień powietrza wentylacyjnego, tym mniejsze jest zapotrzebowanie na chłód.

Uzasadnienie: Jeżeli zwiększymy strumień powietrza wentylacyjnego, to wtedy nadmiar ciepła zostanie – niejako przy okazji – usunięty przez kanały wentylacyjne z pomieszczenia i zapotrzebowanie na chłodzenie będzie mniejsze. Dlatego często wystarczy włączyć nawiew świeżego powietrza wentylacyjnego, aby obniżyć temperaturę w pomieszczeniu, jeżeli temp. na zewnątrz jest niższą niż wewnątrz pomieszczenia.

 3) im większy bezwymiarowy czynnik wykorzystania strat ciepła dla chłodzenia ηc, tym mniejsze jest zapotrzebowanie na chłód.

Uzasadnienie: Należy zauważyć, że część zysków ciepła jest pożądana!, aby w pomieszczeniu chłodzonym utrzymać zakładaną temperaturę np. 25 stopni ( jest to temperatura nastawy, czyli maksymalnej, zamierzonej temperatury w pomieszczeniu). Jednak pozostała część (często większa część) zysków ciepła jest niepożądana, ponieważ prowadzi do zbyt wysokiej temperatury i tym samym do przegrzania budynku. Czyli, im większa część ilość ciepła jest tracona np. przez przenikanie, tym większa jest wartość czynnika ηc, a tym samym mniej nadmiarowego ciepła zostaje w pomieszczeniu, które trzeba schłodzić.

 

W programie ArCADia-TERMO , w etapie Strefy chłodu, można łatwo w praktyce sprawdzić powyższe wnioski, rys.1. Kolorem czerwonym zaznaczono miejsca, których wartości mają wpływ na zapotrzebowanie na energię do chłodzenia.

chlodzenie

Rysunek 1. Parametry strefy chłodu w programie ArCADia-TERMO

Wnioski

Oto co można (choć nie zawsze jest to możliwe) zrobić, aby zapotrzebowanie na chłód zmalało:

  1. zastosować żaluzje,
  2. zwiększyć temp. nastawy z 25 °C na 26 °C,
  3. zwiększyć krotność wymian powietrza wentylacyjnego,
  4. zwiększyć wartość współ. przenikania U przegród,
  5. zmniejszyć zyski wewnętrze poprzez zastosowanie bardziej ekonomicznych urządzeń,
  6. zmniejszyć moc opraw oświetleniowych,
  7. w zakładce Tryby pracy wyłączyć system chłodzenia (temp. 32 stopnie) w godzinach nieużytkowania budynku.

 

 

 

 

 

 

Współczynnik czasu użytkowania β (beta) budynków

Współczynnik czasu użytkowania β budynków

Zgodnie z rozporządzeniem ministra infrastruktury i rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej współczynnik czasu użytkowania budynku oznaczony jest symbolem β i od strony formalnej oznacza udział czasu działania wentylatorów wentylacji mechanicznej w okresie miesiąca, równy udziałowi czasu w jakim budynek lub jego część jest wykorzystaniu budynku w okresie miesiąca.

Współczynnik β ma bardzo istotne znaczenie w obliczeniach, ponieważ ma wpływ na wielkość:

  1. zysków wewnętrznych ,
  2. strat ciepła przez wentylację,
  3. czasu działania urządzeń pomocniczych.

Uwaga! Prawidłowe oszacowanie wielkości współczynnika β ma duże znaczenie dla wartość wskaźnika EP!

Gdy znany jest rzeczywisty lub projektowany czas użytkowania budynku wartość współczynnika β należy obliczać jako ułamek, w którym licznik oznacza czas działania wentylatorów wentylacji mechanicznej, podczas którego zapewniony jest podstawowy strumień powietrza zewnętrznego do pomieszczeń w budynku lub w jego części , a mianownik całkowitą średnią ilość godzin w miesiącu.

W przypadku wykonywania:

  1. świadectwa energetycznego – należy podać rzeczywistą lub projektowaną wartość β,
  2. projektowanej charakterystyki energetycznej – należy podać wartość β projektowaną dla danego budynku lub opartą o standardowy sposób użytkowania danego rodzaju budynku na podstawie rozporządzenia MI lub innych przepisów.

Rozporządzenie MI podaje (jako przykład) wartość β = 0,3 dla budynku biurowego, użytkowanego przez 10 godzin dziennie przez 5 dni w tygodniu, czyli 50 godzin tygodniowo.

 Metoda miesięczna – obliczenia współczynnika β

Ponieważ jednak średnio w każdym miesiącu mamy 22 dni pracujące (5 dni w tygodniu + 2 dni), stąd tużyt = 22 dni * 10 godzin= 220 godzin w miesiącu.

A całkowita średnia liczba godzin w miesiącu wynosi: 24* (365 dni /12 mies.) = 24 *30,42 = 730 godzin.

Dlatego mamy:

β = tużyt / tcałk = 220/730 = 0,301= 0,30, co potwierdza, wartość podaną w rozp. MI.

 

Metoda tygodniowa – obliczenia współczynnika β

W programie ArCADia-TERMO został podany sposób obliczeń, oparty o okres tygodniowy (rys.1.) lub miesięczny, rys.2.

beta_1

Rysunek 1. Obliczenia współ. β metodą tygodniową

 

Oto sposób obliczeń tygodniowy:

 β = 5 dni * 10h / (7dni * 24h)= 50h / 168h = 0,297=0,30

beta_M

Rysunek 2. Obliczenia współ. β metodą miesięczną

Oto sposób obliczeń miesięczny:

β = (10 h * 22 dni* 12 miesięcy) / ( 14 h *22 dni * 12 miesięcy + 24 h *101 dni) = 0,30,    przy czym: 101 dni = 365 dni – (12 * 22 dni)

 lub

 β = (10 h * 22 dni* 12 miesięcy) / 8760 h = 0,30 roku

gdzie: 8760 h – to liczba godzin w ciągu jednego

 Współczynnik użytkowania β budynków mieszkalnych, zamieszkania zbiorowego oraz szpitali

 Współczynnik użytkowania budynków mieszkalnych, zamieszkania zbiorowego oraz szpitali lub przychodni lekarskich działających całą dobę powinien wynosić β = 1,00, ponieważ budynki te użytkowane są przez całą dobę w okresie miesiąca.

Współczynnik użytkowania użytkowania β budynków rekreakcji indywidualnej

Rozporządzenie MI z 27.02.2017 r. nie wymienia wprost parametrów jakie powinien posiadać lub spełniać budynek rekreacji indywidualnej jeżeli chodzi jego użytkowania. Jednak ponieważ jest to budynek przeznaczony do okresowego wypoczynku na czas co najmniej 1 miesiąca w ciągu roku, np. okresie letnim i/lub zimowym np. w okresie wakacji, dlatego współczynnik β powinien wynosić 1,00.

Współczynnik użytkowania użytkowania β w przypadku wentylacji grawitacyjnej lub hybrydowej

Choć od strony formalnej definicja współczynnika użytkowania β dotyczy tylko wentylacji mechanicznej, to jednak dla wentylacji grawitacyjnej lub hybrydowej również można i trzeba określić wartość tego współczynnika. Różnica polega tylko na tym, że dla wentylacji grawitacyjnej lub hybrydowej nie można posługiwać się wielkością jaką jest czas działania wentylatorów (bo ich nie ma), a zamiast tego do obliczenia współ. β należy wziąć pod uwagę rzeczywisty lub standardowy czas użytkowania budynku. Oznacza to, że np. dla budynku biurowego domyślna wartość współ. β, będzie wynosiła 0,3 bez względu czy w tym budynku jest wentylacja grawitacyjna, hybrydowa czy mechaniczna.

 

Podsumowanie

  1. Obliczenie współczynnika β metodą miesięczną i tygodniową daje praktycznie te same wyniki.
  2. Obliczenie współczynnika β powinno być z dokładnością do 0,05, ponieważ ma bardzo duży wpływ na wskaźnik EP.
  3. Rodzaj zainstalowanej w budynku wentylacji nie ma wpływu na współczynnik β.
  4. Program ArCADia-TERMO pozwala na obliczenie wartości współczynnika β zarówno metodą tygodniową, jak i miesięczną.

 

 

Szczegółowe obliczenia zysków wewnętrznych w budynkach biurowych

Dokładne obliczenia zysków wewnętrznych ma bardzo duże znaczenie przy obliczaniu wartości wskaźnika EP. Choć metodologia podana w rozp. MI z dnia 27.02.2015 r. podaje wzór zawierający szacunkowe wartości średnich jednostkowych (czyli na 1 m2 powierzchni Af) zysków wewnętrznych qint, to jednak są to wartości, które należy umieć poprawnie interpretować w zależności od sposobu użytkowania całego budynku biurowego lub jego części. Inaczej bowiem wyglądają obliczenia qint dla całego budynku biurowego, a zupełnie inaczej dla jego poszczególnych części, jakimi są strefy cieplne! Nie wolno też przyjmować dla budynków biurowych wartości zysków qint rzeczywistych lub projektowanych podanych w projekcie budowlanym, ponieważ spowodowałoby to brak możliwości wykonania obiektywnej i porównywalnej oceny efektywności energetycznej budynków oraz wskaźnika EP o podobnej konstrukcji i przeznaczeniu. W tym wypadku rozporządzenie jest na miejscu pierwszym. Jeżeli część pomieszczeń jest chłodzona (klimatyzowana), to sposób obliczeń zysków wewnętrznych jest taki sam jak dla pomieszczeń ogrzewanych.

  • Analiza wzoru na qint podana w rozp. MI

Podany w tabeli rozp. MI 26 wzór dla budynków biurowych ma następującą postać:

qint = [20,0 * P1 * + 8,0 * (1-P1)] * β + [2,0 * P1 + 1,0 *(1-P1)] * (1-β)        (w.1)

Postać ta nie jest oczywiście przypadkowa. Pozwala bowiem w łatwy sposób, rozbić ten wzór na 4 niezależne od siebie wzory cząstkowe, określające zyski wewnętrzne dla całego budynku jak i poszczególnych jego części (rozumianych jako strefy cieplne) w zależności od tego czy budynek jest użytkowany czy nie.

Tak więc wzór w.1 można rozpisać w następujący sposób:

qint = q1 + q2 + q3 + q4

gdzie:

q1 = 20,0 * P1 * β – są to średnie jednostkowe zyski wewnętrzne w pomieszczeniach biurowych w okresie użytkowania budynku, np. ciągu dnia od poniedziałku to piątku,
q2 = 8,0 * (1 – P1) * β – są to średnie jednostkowe zyski wewnętrzne w pomieszczeniach pomocniczych (niebiurowych) w okresie użytkowania budynku, np. ciągu dnia od poniedziałku to piątku,
q3 = 2,0 * P1 * (1- β) – są to jednostkowe zyski wewnętrzne w pomieszczeniach biurowych w okresie nieużytkowania budynku, np. nocy od poniedziałku to piątku i w weekendy oraz święta,
q4 = 1,0 * (1-P1) * (1- β) – są to jednostkowe zyski wewnętrzne w pomieszczeniach pomocniczych (niebiurowych) w okresie nieużytkowania budynku, np. nocy od poniedziałku to piątku i w weekendy oraz święta.

Na tej podstawie można wykonać tabelę 1, pokazującą jakie należy przyjmować średnie zyski wewnętrzne w przypadku całego budynku biurowego lub jego poszczególnych części. Przy czym średnie zyski wewnętrzne dla całego budynku biurowego (wtedy gdy jest tylko jedna strefa cieplna ogrzewana, reprezentująca cały budynek (a nie tylko jego część) należy przyjmować qint = 5,7 W/m2, w przypadku gdy udział powierzchni biurowej P1 = 0,6, a współ. użytkowania β całego budynku wynosi 0,3.

Tabela 1. Wartości jednostkowe zysków wewnętrznych w budynku biurowym.4_1_Tabela_qint

Niezwykle istotne znaczenie na wskaźnik EP budyneku ma dokładne obliczenie parametru P1.  Automatyczne przyjmowanie domyślnej wartości równej 0,6 jest zawsze bardzo ryzykowne, bowiem może spowodować, że wskaźnik EP będzie większy niż EPmax lub zbyt niski, co może być niezgodne ze stanem faktycznym. Przyjęcie na przykład dla przestrzeni biurowych typu open-space przyjęcie wartości P1=0,60 zamiast P1=0,95, zwiększy EP nawet o 10% lub więcej – a to jest bardzo dużo.

Aby ułatwić prawidłowe określenie wewnętrznych zysków ciepła qint poniżej podano 4 często spotykane przykłady.

Przykład 1.

We wszystkich pomieszczeniach biurowych i pomocniczych budynku biurowego (np. WC, kuchenka, komunikacja) jest ta sama temperatura i ten sam typ wentylacji. Nie ma klatki schodowej. Oznacza to, że jest tylko jedna strefa cieplna:

1) Budynek biurowy (P1=0,6, β=0,3). Wtedy qint= 5,7 W/m2.

Przykład 2.

We wszystkich pomieszczeniach biurowych typu open-space i pomocniczych budynku biurowego jest ta sama temperatura i ten sam typ wentylacji. Klatka schodowa została wydzielona jako osobna strefa, ze względu na inny typ wentylacji. Oznacza to, że są 2 strefy cieplna:

  1. Pierwsza, to Część biurowa (P1=0,98 i β=0,3),
  2. Druga – Klatka schodowa (P1=0 i β=0,3),

Wtedy dla strefy Część biurowa qint= 7,31 W/m2, a dla Klatka schodowa qint= 3,1 W/m2.

Przykład 3.

We wszystkich pomieszczeniach biurowych typu open-space i pomocniczych budynku biurowego jest ta sama temperatura i ten sam typ wentylacji. Główna Klatka schodowa została wydzielona jako osobna strefa, ze względu na inny typ wentylacji. Jest jeszcze dodatkowa, klatka schodowa służąca do ewakuacji pracowników i petentów w przypadku zagrożenia. Normalnie jest ona nieużywana. Oznacza to, że są 3 strefy cieplne.

  1. Pierwsza, to Część biurowa (P1=0,98 i β=0,3),
  2. Druga, to Główna klatka schodowa (P1=0 i β=0,3),
  3. Trzecia, to Dodatkowa klatka schodowa (P1=0 i β=0,0).

Wtedy dla strefy Część biurowa qint= 7,31 W/m2, Główna klatka schodowa qint= 3,1 W/m2, a dla Dodatkowa klatka schodowa qint= 0,0 W/m2.

Przykład 4.

We wszystkich pomieszczeniach biurowych typu open-space i pomocniczych budynku biurowego jest ta sama temperatura i ten sam typ wentylacji. Główna klatka schodowa oraz Magazyn dokumentacji ( w kondygnacji podziemnej) zostały wydzielone jako osobne strefa, ze względu na inny typ wentylacji. Jest jeszcze dodatkowa, klatka schodowa służąca do ewakuacji pracowników i petentów w przypadku zagrożenia. Normalnie jest ona nieużywana. Oznacza to, że są 4 strefy cieplne:

  1. Pierwsza, to Część biurowa (P1=0,98 i β=0,3),
  2. Druga, to Główna klatka schodowa(P1=0 i β=0,3),
  3. Trzecia, to Dodatkowa klatka schodowa (P1=0 i β=0,0),
  4. Czwarta, to Magazyn dokumentacji (P1=0 i β=0,3).

Wtedy dla stref: Część biurowa qint= 7,31 W/m2, Główna klatka schodowa qint= 3,1 W/m2, Dodatkowa klatka schodowa qint= 0,0 W/m2 i Magazyn dokumentacji qint= 3,1 W/m2.

Na marginesie należy nadmienić, że gdyby w tym samym budynku biurowym zamiast Magazynu dokumentacji był Magazyn części zamiennych do samochodów, to wtedy magazyn ten, należałoby uznać za samodzielną część budynku (niezależną od części biurowej) i zyski wewnętrze obliczać jak dla budynku magazynowego, czyli ze wzoru: 2,0 ⋅β + 1,0⋅(1−β).  Obliczanie zysków ciepła w programie ArCADia-TERMO W programie ArCADia-TERMO wewnętrzne zyski ciepła qint oblicza się tylko w etapach Strefy ciepła i Strefy chłodu. 4_2_qint
Rysunek 1. Wewnętrzne zyski ciepła qint w programie ArCADia-TERMO

4_3_qint_2
Rysunek 2. Fragment tabeli w programie ArCADia-TERMO zawierającej wzory wewnętrznych zysków ciepła qint

Podsumowanie

  1. Średnie jednostkowe wartości zysków wewnętrznych qint należy przyjmować z tabeli 26 (str. 40) rozp. MI z dnia 27.02.2015,
  2. Określenie parametru P1 oraz współczynnika β dla każdej strefy zależy od funkcji i sposobu użytkowania pomieszczeń należących do tej strefy.
  3. Rolą certyfikatora podczas obliczania zysków wewnętrznych jest bardzo dokładne obliczenie wartości P1 oraz β. Wartość P1 powinna być obliczona z dokładnością do 0,01 ( 2 miejsca po przecinku), a współ. β z dokładnością do 0,05 ( a jeżeli nie jest to możliwe , to z dokładnością do 0,1).
  4. Zmiana wartość parametru P1 oraz współ. β tylko o 0,1 może czasem spowodować zmianę zapotrzebowania na ciepło QH,nd nawet aż o około 10%.
  5. W strefach chłodzonych zyski wewnętrzne oblicza się w taki sam sposób jak w strefach ogrzewanych.
  6. Zysków wewnętrznych w pomieszczeniach i strefach nieogrzewanych i niechłodzonych nie oblicza się.